Communication Complexity of the Fast Multipole Method and its Algebraic Variants

نویسندگان

  • Rio Yokota
  • George M. Turkiyyah
  • David Keyes
چکیده

A combination of hierarchical tree-like data structures and data access patterns from fast multipole methods and hierarchical low-rank approximation of linear operators from H-matrix methods appears to form an algorithmic path forward for efficient implementation of many linear algebraic operations of scientific computing at the exascale. The combination provides asymptotically optimal computational and communication complexity and applicability to large classes of operators that commonly arise in scientific computing applications. A convergence of the mathematical theories of the fast multipole and H-matrix methods has been underway for over a decade. We recap this mathematical unification and describe implementation aspects of a hybrid of these two compelling hierarchical algorithms on hierarchical distributed-shared memory architectures, which are likely to be the first to reach the exascale. We present a new communication complexity estimate for fast multipole methods on such architectures. We also show how the data structures and access patterns of H-matrices for low-rank operators map onto those of fast multipole, leading to an algebraically generalized form of fast multipole that compromises none of its architecturally ideal properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Multipole and Empirical Relations Methods for Effective Index and Dispersion Calculations of Silica-Based Photonic Crystal Fibers

In this paper, we present a solid-core Silica-based photonic crystal fiber (PCF) composed of hexagonal lattice of air-holes and calculate the effective index and chromatic dispersion of PCF for different physical parameters using the empirical relations method (ERM). These results are compared with the data obtained from the conventional multipole method (MPM). Our simulation results reveal tha...

متن کامل

Parallel Fast Multipole Algorithm using MPI

The simulation of many-body, many-particle system has a wide range of applications in area such as biophysics, chemistry, astrophysics, etc. It is known that the force calculation contributes ninety percent of the simulation time. This is mainly due to the fact that the total number of interactions in the force is O(N 2), where N is the number of particles in the system. The fast multipole algo...

متن کامل

Efficient and Accurate Higher-order Fast Multipole Boundary Element Method for Poisson Boltzmann Electrostatics

The Poisson-Boltzmann equation is a partial differential equation that describes the electrostatic behavior of molecules in ionic solutions. Significant efforts have been devoted to accurate and efficient computation for solving this equation. In this paper, we developed a boundary element framework based on the linear time fast multipole method for solving the linearized PoissonBoltzmann equat...

متن کامل

Reducing communication in algebraic multigrid using additive variants

Algebraic multigrid (AMG) has proven to be an effective scalable solver on many high performance computers, however its increasing communication complexity on coarser levels has shown to seriously impact its performance on computers with high communication cost. Additive AMG variants provide increased parallelism as well as decreased numbers of messages per cycle, but can also lead to decreased...

متن کامل

The fast multipole method for the direct E/MEG problem

Reconstructing neuronal activity from MEG and EEG measurements requires the accurate calculation of the electromagnetic field inside the head. The boundary element formulation of this problem leads to a dense linear system which is too large to be solved directly. We propose to accelerate the computations via the fast multipole method. This method approximates the electromagnetic interaction be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1406.1974  شماره 

صفحات  -

تاریخ انتشار 2014